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Abstract. Due to the “uncontrollable behavior” of the inner parallel
bodies of a convex body K ⊂ Rn regarding its boundary structure, it is
not possible to get precise formulae for their volume/quermassintegrals,
contrary to the case of the outer parallel bodies. In this paper we pro-
vide (sharp) bounds for the quermassintegrals of the inner parallel bod-
ies, studying previously some particular properties of their boundary in
terms of their outer normal vectors.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets in the
n-dimensional Euclidean space Rn. The subset of Kn consisting of all con-
vex bodies with non-empty interior is denoted by Kn

0 . Let Bn be the n-
dimensional unit ball and Sn−1 the (n − 1)-dimensional unit sphere of Rn.
The volume of a set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is
denoted by V(M).

For two convex bodies K ∈ Kn and E ∈ Kn
0 and a non-negative real

number λ the outer parallel body of K (relative to E) at distance λ is the
Minkowski sum K + λE. On the other hand, for 0 ≤ λ ≤ r(K; E) the inner
parallel body of K (relative to E) at distance λ is the set

K ∼ λE = {x ∈ Rn : λE + x ⊂ K},
where the relative inradius r(K; E) of K with respect to E is defined by

r(K;E) = sup{r : ∃x ∈ Rn with x + r E ⊂ K}.
When E = Bn, r(K;Bn) = r(K) is the classical inradius (see [2, p. 59]).
Clearly if λ = 0 the original body K is obtained. Notice that K ∼ r(K;E)E
is the set of (relative) incenters of K, usually called kernel of K with respect
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to E and denoted by ker(K;E). The dimension of ker(K; E) is strictly less
than n (see [2, p. 59]).

There is an essential geometrically intuitive difference between outer and
inner parallel bodies of a convex body K ∈ Kn. On the one hand, the
difference lies in the fact that outer parallel bodies are built just by using
a vectorial operation in the Euclidean space, while inner parallel bodies do
not correspond to any such operation. On the other hand it is precisely this
difference what makes the study of inner parallel bodies not only interesting
but useful, since it is connected with other nice problems for convex bodies
(see, for instance, [1, 4, 7, 8, 10, 11, 14]).

In the case of outer parallel bodies, both the boundary structure and the
volume are controlled; there exists an explicit formula for computing the
volume of K + λE, the so called relative Steiner formula

(1.1) V(K + λE) =
n∑

i=0

(
n

i

)
Wi(K;E)λi.

The coefficients Wi(K; E) are called the relative quermassintegrals of K,
and they are just a special case of the more general mixed volumes for which
we refer to [17, s. 5.1] and [6, s. 6.2, 6.3]. In particular, we have W0(K; E) =
V(K) and Wn(K; E) = V(E). Analogous formulae to (1.1) give the value
of the relative i-th quermassintegral of K + λE, namely

(1.2) Wi(K + λE; E) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)λk,

for λ ≥ 0 and i = 0, . . . , n. However, the boundary structure of the inner
parallel bodies is rather more difficult to control (see Figure 1) and moreover,
there is no way to compute (in general) their volume.

Figure 1. Inner parallel body of an ellipse (relative to B2)
and a circle (relative to the square).

It leads us to consider the problem of obtaining lower/upper bounds for
the quermassintegrals of the inner parallel body in terms of the magnitudes
of the original body, for which it will be crucial to study the behavior of the
inner parallel body itself with respect to the structure of its boundary (in
the sense we will introduce later). In [11] the case of the volume is studied.
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2. The main results

From now on E ∈ Kn
0 will be a fixed convex body (with interior points)

and for any K ∈ Kn we will write r = r(K;E) for the sake of brevity, unless
it is not clear from context.

In order to state the main results we need some additional definitions and
notation. As usual in the literature, we denote by h(K, u) = sup

{〈x, u〉 :
x ∈ K

}
, u ∈ Rn, the support function of K ∈ Kn (see e.g. [17, s. 1.7]).

For convex bodies K1, . . . , Km ∈ Kn and real numbers λ1, . . . , λm ≥ 0, the
volume of the linear combination λ1K1 + · · · + λmKm is expressed as a
polynomial of degree n in the variables λ1, . . . , λm,

V
(
λ1K1 + · · ·+ λmKm

)
=

m∑

i1=1

· · ·
m∑

in=1

V(Ki1 , . . . , Kin)λi1 · · ·λin .

The coefficients V(Ki1 , . . . , Kin) are the mixed volumes of K1, . . . ,Km. This
formula (mixed volumes) extends the relative Steiner formula (1.1) (relative
quermassintegrals). Moreover, if K1, . . . , Kn−1 ∈ Kn, the mixed surface area
measure S(K1, . . . , Kn−1; ·) is the unique finite Borel measure on Sn−1 such
that for all K ∈ Kn,

(2.1) V(K,K1, . . . , Kn−1) =
1
n

∫

Sn−1

h(K, u) dS(K1, . . . ,Kn−1;u).

For the sake of brevity we will use the abbreviation
(
K1[r1], . . . , Km[rm]

) ≡(
K1,

(r1). . . , K1, . . . , Km, (rm). . . , Km

)
. For a deep study of mixed volumes and

mixed surface area measures we refer to [17, s. 5.1].
On the other hand, we write N(K, x) to denote the normal cone of K at

x ∈ bdK, i.e., the set of all outer normal vectors of K at x (with the zero
vector). A vector u ∈ Sn−1 is an r-extreme normal vector of K, 0 ≤ r ≤ n−1,
if we cannot write u = u1 + · · ·+ ur+2, with ui linearly independent normal
vectors at one and the same boundary point of K. We denote the set of
r-extreme normal vectors of K by Ur(K). Clearly each r-extreme normal
vector is also an s-extreme one for r < s ≤ n− 1. Notice that for K ∈ Kn,
if x ∈ bd K is a regular point (i.e., if the supporting hyperplane to K at x
is unique), then dimN(K,x) = 1 and hence the (only) outer normal vector
u ∈ N(K, x) is a 0-extreme normal vector of K. A convex body K is said
to be regular if all its boundary points are regular.

The (relative) form body of a convex body K ∈ Kn
0 with respect to E,

denoted by K∗, is defined as

K∗ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(E, u)

}
.

A convex body K ∈ Kn containing the convex body E ∈ Kn
0 is called a p-

tangential body of E, p ∈ {0, . . . , n− 1}, if each (n− p− 1)-extreme support
plane of K supports E [17, pp. 75–76]. Here a support plane is said to be
p-extreme if its outer normal vector is a p-extreme normal vector of K. For
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further characterizations and properties of p-tangential bodies we refer to
[17, Section 2.2].

So a 0-tangential body of E is the body E itself and each p-tangential body
of E is also a q-tangential body for p < q ≤ n − 1. Notice also that there
exist p-tangential bodies of E which are not (p− 1)-tangential bodies of E
(see e.g. [5, p. 163] or [9, Proof Th. 1.2]). A 1-tangential body is usually
called cap-body, and it can be seen as the convex hull of E and countably
many points such that the line segment joining any pair of those points
intersects E (see [17, p. 76]). An (n − 1)-tangential body will be briefly
called a tangential body.

Notice that the form body K∗ of a convex body K is always a tangential
body. The following theorem shows the close relation existing between the
inner parallel bodies and the tangential bodies.

Theorem 2.1 (Schneider [17, pp. 136–137]). Let K ∈ Kn
0 and −r < λ < 0.

Then K ∼ |λ|E is homothetic to K if, and only if, K is homothetic to a
tangential body of E.

From now on we will write Kλ to denote the (relative) inner/outer parallel
bodies of K, i.e.,

Kλ :=
{

K ∼ |λ|E for − r ≤ λ ≤ 0,

K + λE for 0 ≤ λ < ∞.

In [14, Lemma 4.8] it is proved that for K ∈ Kn
0 and −r ≤ λ ≤ 0 it holds

(2.2) Kλ + |λ|K∗ ⊆ K.

Here we characterize the convex bodies for which equality holds in (2.2).

Theorem 2.2. Let K ∈ Kn
0 and let E ∈ Kn

0 be regular. Then K = Kλ +
|λ|K∗ for every −r ≤ λ ≤ 0 if and only if K is a tangential body of K−r+rE
satisfying that for all −r ≤ λ ≤ 0,

(2.3) U0(K) = U0(Kλ + K∗).

The above theorem allows us to determine the extremal sets in the an-
nounced inequalities involving the quermassintegrals of inner parallel bodies:

Theorem 2.3. Let K ∈ Kn
0 and let E ∈ Kn

0 be regular and strictly convex.
For −r ≤ λ ≤ 0 and i = 0, . . . , n− 1,

(2.4) Wi(Kλ; E) ≤ Wi(K; E)−|λ|
n−i−1∑

k=0

V
(
Kλ[k],K[n−i−k−1],K∗, E[i]

)
.

If K is a tangential body of K−r +rE satisfying condition (2.3) then equality
holds in all the inequalities. Conversely, if equality holds in (2.4) for some
i ∈ {0, . . . , n− 1} then K is a tangential body of K−r + rE.

These results improve previous bounds obtained in [3], where conditions
for the equality case are not provided:
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Theorem 2.4 ([3, Theorem 2]). Let K ∈ Kn. For −r ≤ λ ≤ 0 and for any
i = 0, . . . , n− 1 it holds

Wi(Kλ; E) ≤ Wi(K;E)− |λ|
n−i−1∑

k=0

V
(
Kλ[k],K[n− i− k − 1], E[i + 1]

)
.

Under the assumption that the convex body K ∈ Kn
0 satisfies some partic-

ular “differentiability conditions”, we can improve the previous inequalities.
We will deal with it in the last section, where the so called classes Rp, in
which the convex bodies are classified, will be defined.

3. 0-extreme vectors of inner parallel bodies. The proof of
Theorem 2.2

We start this section by studying some particular behavior of the inner
parallel bodies with respect to their 0-extreme normal vectors, which will
be needed further on.

In [14, Lemma 4.5] it is shown that for any K ∈ Kn and −r < λ ≤ 0 then

(3.1) U0(Kλ) ⊆ U0(K).

A first question arising from the above relation is for which convex bodies
the equality holds in (3.1). Before answering this question we prove a use-
ful property regarding 0-extreme vectors and the Minkowski sum. In [14,
Lemma 2.4] it is proved that for any K, L ∈ Kn,

(3.2) U0(K) ∪ U0(L) ⊆ U0(K + L).

Next we show that the set of 0-extreme vectors of the Minkowski sum of two
convex bodies does not depend on the size of the summands involved in it.

Lemma 3.1. Let K, L ∈ Kn and λ > 0. Then

U0(K + L) = U0(K + λL).

Proof. First we assume that 0 < λ ≤ 1. Then, K + L = K + λL + (1− λ)L,
i.e., K +λL is the inner parallel body of K +L with respect to L at distance
1− λ. So, by (3.1) we get U0(K + λL) ⊆ U0(K + L). On the other hand, it
is clear that U0(λK) = U0(K) and hence U0(λK + λL) = U0(K + L). Since
K + λL = λK + λL + (1− λ)K, we get that λK + λL is the inner parallel
body of K + L with respect to K at distance 1 − λ and thus, using again
(3.1), it follows that

U0(K + L) = U0(λK + λL) ⊆ U0(K + λL).

Together with the previous inclusion we get the result, i.e., U0(K + L) =
U0(K + λL).

Finally, if λ ≥ 1 (and hence 1/λ ≤ 1) it is enough to consider (1/λ)(K +
λL) = (1/λ)K + L. Since

U0(K + λL) = U0

(
(1/λ)(K + λL)

)
= U0

(
(1/λ)K + L

)
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we have just to apply the previous case, interchanging the roles of K and L,
to obtain the result. ¤

Now we deal with the equality case in (3.1).

Lemma 3.2. Let K ∈ Kn and let E ∈ Kn
0 be regular. If K is a tangential

body of the outer parallel body (K−r)r = K−r +rE, then for any −r < λ ≤ 0,

(3.3) U0(K) = U0(Kλ).

Proof. First we show that for every u ∈ U0(K), h(Kλ, u) = h
(
(K−r)r+λ, u

)
.

Notice, on one hand, that since K is a tangential body of (K−r)r then
h(K,u) = h

(
(K−r)r, u

)
for any u ∈ U0(K) and thus

h(Kλ, u) ≤ h(K, u)− |λ|h(E, u) = h(K−r + rE, u)− |λ|h(E, u)

= h(K−r, u) + (r + λ)h(E, u).

On the other hand, it is clear from the definition of inner parallel body that
since

(K−r)r+λ + |λ|E = K−r +
(
r− |λ|)E + |λ|E = K−r + rE = (K−r)r ⊆ K,

then (K−r)r+λ ⊆ Kλ and hence we have

h(Kλ, u) ≥ h(K−r, u) + (r + λ)h(E, u).

Thus we obtain the equality h(Kλ, u) = h
(
(K−r)r+λ, u

)
for any u ∈ U0(K),

as required.
Now, in order to prove that U0(Kλ) = U0(K) for every −r < λ ≤ 0, let

u ∈ U0(K). Since it holds that h(Kλ, u) = h
(
(K−r)r+λ, u

)
, the supporting

hyperplanes H(Kλ, u) and H
(
(K−r)r+λ, u

)
coincide. Moreover, we know

that (K−r)r+λ ⊆ Kλ. So, at any common point x in the (non-empty) inter-
section of the support sets Kλ∩H(Kλ, u) and (K−r)r+λ∩H

(
(K−r)r+λ, u

)
, the

corresponding normal cones verify that N(Kλ, x) ⊆ N
(
(K−r)r+λ, x

)
. On the

other hand, since clearly (K−r)r+λ is regular then dimN
(
(K−r)r+λ, x

)
= 1;

hence dimN(Kλ, x) = 1 which proves that u ∈ U0(Kλ). Thus U0(K) ⊆
U0(Kλ) and with (3.1) we get the result. ¤

Lemma 3.3. Let K ∈ Kn be a regular convex body. Then U0(K) = U0(Kλ)
for any −r < λ ≤ 0 if and only if K = K−r + rE.

Proof. If K = K−r + rE then Kλ = K−r +
(
r− |λ|)E, for any −r < λ ≤ 0,

and applying Lemma 3.1 we obtain

U0(Kλ) = U0

(
K−r + (r + λ)E

)
= U0(K−r + rE) = U0(K)

(notice that in this part of the result, the regularity of the convex body K is
not needed). So, we assume U0(Kλ) = U0(K) for all λ ∈ (−r, 0]. It is known
that (see [14, Lemma 4.4])

(3.4) if u ∈ U0(Kλ) then h(Kλ, u) = h(K,u) + λh(E, u).
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Since K is regular, U0(Kλ) = U0(K) = Sn−1 and hence, for all u ∈ Sn−1 =
U0(Kλ) it holds h(Kλ, u) = h(K, u) + λh(E, u). Therefore (see (2.1))

Wn−1(Kλ;E) =
1
n

∫

Sn−1

h(Kλ, u) dSn−1(E;u)

=
1
n

∫

Sn−1

h(K, u) dSn−1(E; u) +
1
n

∫

Sn−1

λh(E, u) dSn−1(E;u)

= Wn−1(K; E) + λWn−1(E;E) = Wn−1(K; E)− |λ|Wn−1(E; E).

Thus by the linearity of mixed volumes (see e.g. [17, p. 279]) we get

Wn−1(K; E) = Wn−1(Kλ; E) + |λ|Wn−1(E; E) = Wn−1

(
Kλ + |λ|E)

,

and since it always holds Kλ + |λ|E ⊆ K, we conclude that K = Kλ + |λ|E.
Notice that we have shown K = Kλ + |λ|E for all λ ∈ (−r, 0], which implies
that K = K−r + rE, as required. ¤

Now we prove Theorem 2.2. The following result can be found in [14,
Lemma 4.9], and it will be needed in the proof of the theorem. We will
write K∗

λ = (Kλ)∗ to denote the form body of the inner parallel body of K
at distance |λ|.
Lemma 3.4. Let K ∈ Kn. For any u ∈ Sn−1, the derivative of h(λ, u) =
h(Kλ, u) with respect to λ ∈ (−r,∞) exists almost everywhere and

d

dλ
h(λ, u) ≥ h(K∗

λ, u).

Equality holds for every −r < λ < ∞ if

(3.5) clU0(Kλ) = U0(Kλ + K∗
λ)

for every −r < λ < ∞.

Proof of Theorem 2.2. We start by assuming that K = Kλ + |λ|K∗ for
every −r ≤ λ ≤ 0, in particular, that K = K−r + rK∗, and we prove that
K is a tangential body of K−r + rE. In order to do that, we first show
that K−r + (r + λ)K∗ is the inner parallel body of K at distance |λ|, i.e.,
Kλ = K−r + (r + λ)K∗, for any −r ≤ λ ≤ 0.

Since U0(Kλ) ⊆ U0(K) (see (3.1)) then it always holds K∗
λ ⊇ K∗ for any

−r < λ ≤ 0. Thus we get from (2.2) that, for −r < λ ≤ 0,

Kλ ⊇ (Kλ)−r(Kλ;E) + r(Kλ; E)K∗
λ = K−r + (r + λ)K∗

λ ⊇ K−r + (r + λ)K∗.

Since for λ = −r we get a trivial identity, the inclusion Kλ ⊇ K−r+(r+λ)K∗
is proved for the full interval [−r, 0]. So it remains to show the reverse
inclusion in the particular case when K = K−r + rK∗. Notice that
(3.6)
Kλ = (K−r + rK∗)λ =

⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(K−r + rK∗, u)− |λ|h(E, u)

}
.
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On the other hand, U0(K) = U0(K−r + rK∗) = U0

(
K−r + (r + λ)K∗) for

−r < λ ≤ 0 by Lemma 3.1. Hence we can write

K−r + (r + λ)K∗ =
⋂

u∈U0

(
K−r+(r+λ)K∗

)
{

x : 〈x, u〉 ≤ h
(
K−r + (r + λ)K∗, u

)}

=
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h

(
K−r + (r + λ)K∗, u

)}

(3.7)

Thus if x ∈ Kλ, −r < λ ≤ 0, it lies in the intersection given in (3.6), and in
order to show that x ∈ K−r + (r + λ)K∗ we have to prove that it lies also in
(3.7). So for any u ∈ U0(K) it follows

〈x, u〉 ≤ h(K−r + rK∗, u)−|λ|h(E, u) = h(K−r, u) + rh(K∗, u)−|λ|h(K∗, u)

= h(K−r, u) + (r + λ)h(K∗, u) = h
(
K−r + (r + λ)K∗, u

)
,

i.e., x ∈ K−r + (r + λ)K∗, which shows that Kλ ⊆ K−r + (r + λ)K∗ for
−r < λ ≤ 0. The case λ = −r holds trivially.

Thus we have shown that

(3.8) Kλ = (K−r + rK∗)λ = K−r + (r + λ)K∗

in the full range −r ≤ λ ≤ 0 and on account of Lemma 3.1, it follows that

U0(Kλ) = U0

(
K−r + (r + λ)K∗) = U0(K−r + rK∗) = U0(K).

We assume now that K is not a tangential body of (K−r)r = K−r + rE.
Then by definition of tangential body there exists u0 ∈ U0(K) such that

H
(
(K−r)r, u0

) ∩H(K, u0) = ∅;
in particular, we have that the distance, say µ, between the above two
hyperplanes is strictly positive. On the other hand, since u0 ∈ U0(K) =
U0(Kλ) we know (see (3.4)) that h(Kλ, u0) = h(K, u0) − |λ|h(E, u0) for
every −r ≤ λ ≤ 0, and hence the distance between the parallel hyper-
planes H(K, u0) and H(Kλ, u0) is |λ|h(E, u0). Moreover, the distance be-
tween the (parallel) hyperplanes H

(
(K−r)r+λ, u0

)
and H

(
(K−r)r, u0

)
is also

|λ|h(E, u0) since the body (K−r)r = K−r+rE is just the outer parallel body
of (K−r)r+λ = K−r + (r + λ)E = K−r +

(
r− |λ|)E at distance |λ|, for every

λ. Thus, the distance between H(Kλ, u0) and H
(
(K−r)r+λ, u0

)
is µ > 0, for

every λ. But this leads to a contradiction, since when |λ| → r, the distance
between H(Kλ, u0) and H

(
(K−r)r+λ, u0

)
goes to zero.

Thus we already know that K is a tangential body of (K−r)r, and it re-
mains to prove that K satisfies condition (2.3). But it is a direct consequence
of Lemma 3.1: for all −r ≤ λ ≤ 0,

U0(K) = U0

(
Kλ + |λ|K∗) = U0(Kλ + K∗).

Conversely, now we assume that K is a tangential body of (K−r)r =
K−r +rE satisfying (2.3) for all −r ≤ λ ≤ 0. Since K is a tangential body of
(K−r)r, Lemma 3.2 ensures that U0(Kλ) = U0(K) for every −r < λ ≤ 0 and
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hence K∗ = K∗
λ for −r < λ ≤ 0. We work first in the half-opened interval

(−r, 0]. It is known (see [10, Lemma 2.1]) that

(3.9) U0(K∗) = clU0(K) when E is regular,

and with (3.2) we get

U0(K) = U0(Kλ + K∗) ⊇ U0(Kλ) ∪ U0(K∗) = U0(K) ∪ clU0(K) ⊇ U0(K).

Therefore, in particular, U0(K) is closed and clU0(K) = U0(Kλ+K∗). Thus,
the above properties allow us to conclude that

clU0(Kλ) = clU0(K) = U0(Kλ + K∗) = U0(Kλ + K∗
λ),

i.e., we get condition (3.5). Then Lemma 3.4 ensures that for all λ ∈ (−r, 0]
and u ∈ Sn−1,

d

dλ
h(λ, u) = h(K∗

λ, u) = h(K∗, u).

Now we fix u ∈ Sn−1 and define the function

f(λ) = h(K,u)− h(λ, u) + λh(K∗, u),

which is absolutely continuous (since h(λ, u) is concave in λ, see [6, Theo-
rem 1.1]), almost everywhere differentiable by Lemma 3.4 and clearly verifies
that f ′(λ) = 0. Thus f is a constant function and since f(0) = 0 we obtain
f ≡ 0, i.e.,

h(K,u) = h(λ, u)−λh(K∗, u) = h(Kλ, u)+|λ|h(K∗, u) = h
(
Kλ+|λ|K∗, u

)
,

for all u ∈ Sn−1. Hence K = Kλ+|λ|K∗ for every λ ∈ (−r, 0]. Now, for each
u ∈ Sn−1 fixed, since h(K, u) = h

(
Kλ + |λ|K∗, u

)
= h(Kλ, u) + |λ|h(K∗, u)

for every λ ∈ (−r, 0], taking limits when λ tends to −r and taking into
account that the support function is continuous with respect to the Hausdorff
metric, we also get that h(K, u) = h

(
K−r, u) + r h(K∗, u) for all u ∈ Sn−1.

Hence K = Kλ + |λ|K∗ for every λ ∈ [−r, 0] and it concludes the proof. ¤
Remark 3.1. It is enough to assume K = K−r + rK∗ in the statement of
Theorem 2.2, since it is equivalent to the condition K = Kλ + |λ|K∗ for all
λ ∈ [−r, 0]: clearly one direction is trivial; for the converse just notice that
if K = K−r + rK∗ then Kλ = K−r + (r + λ)K∗ (see (3.8)), and hence, for
all λ ∈ [−r, 0],

Kλ + |λ|K∗ = K−r +
(
r− |λ|)K∗ + |λ|K∗ = K−r + rK∗ = K.

We have settled the theorem in this way in order to establish the precise
characterization of the equality case in (2.2).

Remark 3.2. Condition (2.3) cannot be omitted: let σ be a line segment of
length ` ≥ 2 in R3 and take a point x lying outside the solid cylinder with
circular cross section of radius 1 and axis the line aff σ. The convex body K
obtained as the convex hull K = conv{σ + B3, x} (see Figure 2) satisfies:

• kerK = σ and r(K; B3) = 1;
• K is a 1-tangential body of σ + B3 = K−1 + B3;



10 M. A. HERNÁNDEZ CIFRE AND E. SAORÍN

• K∗ is just the convex hull of B3 and a suitable segment;
• condition (2.3) does not hold for any λ;

hence K 6= Kλ + |λ|K∗.

Figure 2. A tangential body of K−r + rB3 not satisfying (2.3).

Remark 3.3. Notice that for E regular, if K = Kλ + |λ|K∗ for every
−r ≤ λ ≤ 0 then

d

dλ
h(λ, u) = h(K∗

λ, u) = h(K∗, u)

for all u ∈ Sn−1.

4. Bounding the quermassintegrals of the inner parallel body

In this section we get some bounds for the relative quermassintegrals of
the inner parallel body in terms of the ones of the original body K. The
proof of the inequality in Theorem 2.3 follows the same idea as the one in
[3, Theorem 2]; the equality case is however completely new.

Proof of Theorem 2.3. Using (2.2) and the monotonicity and linearity of
mixed volumes (see e.g. [17, p. 277, p.279]) we get that for −r ≤ λ ≤ 0,

Wi(K; E) = V
(
K[n− i], E[i]

) ≥ V
(
Kλ + |λ|K∗,K[n− i− 1], E[i]

)

= V
(
Kλ,K[n− i− 1], E[i]

)
+ |λ|V(

K∗,K[n− i− 1], E[i]
)

≥ V
(
Kλ,Kλ+|λ|K∗,K[n− i− 2], E[i]

)
+ |λ|V(

K∗,K[n− i− 1], E[i]
)

≥ V
(
Kλ,Kλ, K[n− i− 2], E[i]

)
+ |λ|V(

Kλ,K∗,K[n− i− 2], E[i]
)

+ |λ|V(
K∗,K[n− i− 1], E[i]

)≥ . . .

≥ Wi(Kλ; E) + |λ|
n−i−1∑

k=0

V
(
Kλ[k],K∗,K[n− i− k − 1], E[i]

)
.

Now we deal with the equality case. If K is a tangential body of K−r + rE
satisfying condition (2.3), Theorem 2.2 ensures that K = Kλ + |λ|K∗ for
every −r ≤ λ ≤ 0, and hence equality holds in (2.4). Conversely, now we
assume that equality holds in (2.4) for some i ∈ {0, . . . , n − 1}. Then we
have, in particular, that

V
(
K[n− i], E[i]

)
= V

(
Kλ + |λ|K∗,K[n− i− 1], E[i]

)
,
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or equivalently, using the formula for the mixed volumes given in (2.1) we
get that∫

Sn−1

h(K,u) dS
(
K[n− i− 1], E[i]; u

)

=
∫

Sn−1

h
(
Kλ + |λ|K∗, u

)
dS

(
K[n− i− 1], E[i]; u

)
.

Since Kλ + |λ|K∗ ⊆ K (see (2.2)), we get that the above identity for the
integrals is equivalent to

h
(
Kλ + |λ|K∗, u

)
= h(K,u) for all u ∈ supp S

(
K[n− i− 1], E[i]; u

)
.

On the other hand, since E is regular and strictly convex, results by Schnei-
der (see [16, pp. 135–136]) show that supp S

(
K[n− i−1], E[i];u

)
= clUi(K)

⊇ clU0(K). So we get h
(
Kλ + |λ|K∗, u

)
= h(K, u) for all u ∈ clU0(K). No-

tice that it implies, in particular, that K is a tangential body of Kλ+ |λ|K∗.
Now observe that, for every u ∈ clU0(K) = U0(K∗) (cf. (3.9)) it holds

h(K, u) = h
(
Kλ + |λ|K∗, u

)
= h(Kλ, u) + |λ|h(K∗, u)

= h(Kλ, u) + |λ|h(E, u) = h
(
Kλ + |λ|E, u

)
,

which shows that K is a tangential body of Kλ + |λ|E, for all λ ∈ [−r, 0];
in particular, K is a tangential body of K−r + rE, as required. ¤

Notice that the assumptions of regularity and strict convexity for E are
needed just for the equality case; the inequalities hold for any E ∈ Kn

0 .
The particular case i = 0 provides a new upper bound for the volume of

the inner parallel body.

Corollary 4.1. Let K ∈ Kn
0 and let E ∈ Kn

0 be a regular and strictly convex
body. For −r ≤ λ ≤ 0 it holds

V(Kλ) ≤ V(K)− |λ|
n−1∑

k=0

V
(
Kλ[k], K[n− k − 1],K∗).

If K is a tangential body of K−r +rE satisfying condition (2.3) then equality
holds. Conversely, if equality holds then K is a tangential body of K−r +rE.

Notice that in the case λ = −r we get the following lower bound for the
volume of K:

V(K) ≥ r
n−1∑

k=0

V
(
K−r[k],K[n− k − 1],K∗).

5. Inequalities for convex bodies lying in the class Rp

The family of inner and outer parallel bodies of a convex body K (with
respect to E) determines a concave one-parameter family (see [17, p. 135])
of sets which allows us to consider quermassintegrals as functions depending
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on a real variable, Wi(λ) = Wi(Kλ) for −r ≤ λ ≤ ∞. The Brunn-Minkowski
theorem for relative quermassintegrals (see e.g. [17, p. 339]) ensures that

(5.1) ′Wi(λ) ≥ W′
i(λ) ≥ (n− i)Wi+1(λ)

for i = 0, . . . , n − 1, where ′Wi and W′
i denote, respectively, the left and

right derivatives of the function Wi. It is well known (see e.g. [1, 12]) that
the volume is always differentiable and V′(λ) = nW1(λ). Moreover, if λ ≥ 0
then it is clear from (1.2) that all quermassintegrals are differentiable at
λ (notice that in the case λ = 0 we speak about differentiability from the
right) and W′

i(λ) = (n − i)Wi+1(λ). The question arises for which convex
bodies equalities hold in (5.1) for the full range −r ≤ λ < ∞.

Definition 5.1 ([10]). A convex body K ∈ Kn belongs to the class Rp,
0 ≤ p ≤ n− 1, if for all 0 ≤ i ≤ p, and for −r ≤ λ < ∞ it holds

(5.2) ′Wi(λ) = W′
i(λ) = (n− i)Wi+1(λ).

Since V′(λ) = nW1(λ) then R0 = Kn. Moreover Ri+1 ⊂ Ri strictly for
i = 0, . . . , n − 2, see [10]. The problem of determining the convex bodies
belonging to the classes Rp was originally posed by Hadwiger [7] in R3 and
for E = Bn. In [10] the general n-dimensional problem is studied.

Remark 5.1. Inequalities in Theorem 2.3 allow to give an alternative proof
to the fact that the left derivative of the i-th quermassintegral with respect to
λ, −r < λ ≤ 0 is bounded from below by (n − i)V

(
Kλ[n − i − 1],K∗

λ, E[i]
)
,

which was proved in [14, Lemma 3.5]: for h ≥ 0, using (2.4) and considering
that Kλ−h is an inner parallel body of Kλ if λ− h > −r, we get

′Wi(λ) = lim
h→0

Wi(Kλ; E)−Wi(Kλ−h; E)
h

≥ lim
h→0

h
∑n−i−1

k=0 V
(
Kλ−h[k], Kλ[n− i− k − 1],K∗

λ, E[i]
)

h

=
n−i−1∑

k=0

V
(
Kλ[n− i− 1], K∗

λ, E[i]
)
=(n− i)V

(
Kλ[n− i− 1],K∗

λ, E[i]
)
.

Moreover, since E ⊆ K∗
λ for all −r < λ ≤ 0, we also get the bound given in

(5.1), namely ′Wi(λ) ≥ (n− i)Wi+1(λ).

Under the assumption that the convex body K ∈ Kn
0 lies in the class Rp,

we can improve the inequalities in Theorem 2.3.

Proposition 5.1. Let K ∈ Kn
0 lie in the class Rp and let E ∈ Kn

0 be regular
and strictly convex. For 0 ≤ i ≤ p and for −r ≤ λ ≤ 0 it holds

Wi(Kλ;E) ≥ Wi(K; E)− (n− i) |λ|Wi+1(K; E)

+ (n− i)
λ2

2
V

(
K[n− i− 2],K∗, E[i + 1]

)

− (n− i)
n−i−2∑

k=1

∫ 0

λ
tV

(
Kt[k],K[n−i−k−2],K∗, E[i+1]

)
dt.

(5.3)
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If K is a tangential body of K−r +rE satisfying condition (2.3) then equality
holds in all the inequalities. Conversely, if equality holds in (5.3) for some
i ∈ {0, . . . , p} then K is a tangential body of K−r + rE.

Proof. If we consider inequality (2.4) in the case of the (i + 1)-th quermass-
integral, i = 0, . . . , p,

Wi+1(Kλ; E) ≤ Wi+1(K; E)− |λ|V(
K[n− i− 2],K∗, E[i + 1]

)

− |λ|
n−i−2∑

k=1

V
(
Kλ[k],K[n− i− k − 2], K∗, E[i + 1]

)
,

integrating from λ to 0 we get
∫ 0

λ
Wi+1(Kt; E) dt ≤

∫ 0

λ

[
Wi+1(K; E) + tV

(
K[n− i− 2],K∗, E[i + 1]

)]
dt

+
∫ 0

λ
t

n−i−2∑

k=1

V
(
Kt[k],K[n− i− k − 2],K∗, E[i + 1]

)
dt.

Since K ∈ Rp, we have W′
i(Kt) = (n−i)Wi+1(Kt) for i = 0, . . . , p, and hence

Wi(K;E)−Wi(Kλ;E)
n− i

≤−λWi+1(K; E)− λ2

2
V

(
K[n− i− 2],K∗, E[i + 1]

)

+
n−i−2∑

k=1

∫ 0

λ
tV

(
Kt[k],K[n− i− k − 2],K∗, E[i + 1]

)
dt,

which concludes the proof of the inequality. The conditions for the equality
case follow directly from Theorem 2.3. ¤

Proposition 5.1 for the class R0 leads to the following corollary.

Corollary 5.1. Let K ∈ Kn
0 and let E ∈ Kn

0 be a regular and strictly convex
body. For −r ≤ λ ≤ 0 we have

V(Kλ) ≥ V(K)− n |λ|W1(K; E) + n
λ2

2
V

(
K[n− 2],K∗, E

)

− n
n−2∑

k=1

∫ 0

λ
tV

(
Kt[k],K[n− k − 2], K∗, E

)
dt.

If K is a tangential body of K−r +rE satisfying condition (2.3) then equality
holds. Conversely, if equality holds then K is a tangential body of K−r +rE.

This inequality strengthens the one obtained by Brannen in [3, Corol-
lary 2], namely,

V(Kλ) ≥ V(K)− n |λ|W1(K; E) + n
λ2

2
W2(K; E)

+ n
n−2∑

k=1

∫ |λ|

0
tV

(
Kt[k],K[n− k − 2], E[2]

)
dt.

(5.4)
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Notice that when λ = −r, Corollary 5.1 provides an upper bound for the
volume of K:

1
n

V(K) ≤ rW1(K; E)− r2

2
V

(
K[n− 2],K∗, E

)

+
n−2∑

k=1

∫ 0

−r
tV

(
Kt[k],K[n− k − 2],K∗, E

)
dt.

Moreover, in the case n = 3, the above inequality is written as

(5.5)
1
3
V(K) ≤ rW1(K; E)− r2

2
V

(
K, K∗, E

)
+

∫ 0

−r
tV

(
Kt,K

∗, E
)
dt.

It improves the corresponding inequality by Brannen (5.4) for n = 3 which,
in turn, is sharper than the so called Osserman inequality in the particular
case of n = 3 and E = B3 (for a proof of this assertion see [3, p. 3982]),
namely

V(K) ≤ 3r(K)W1(K)− 2r(K)2
[
V(B3)W1(K)

]1/2

(see [13]); here we write, as usual in the literature, Wi(K) = Wi(K; B3).
Thus we get that (5.5) is a strengthening of Osserman’s inequality.

Remark 5.2. In [15, p. 175] it is shown that for any convex body K ∈ Kn
0

with inradius r = r(K) and for all −r ≤ λ ≤ 0

(5.6) V(Kλ) ≥ V(K)− 3 |λ|W1(K) + 2λ2W2(K) + λ2W2(Kλ),

where equality holds for all −r ≤ λ ≤ 0 if and only if K is a 1-tangential
body of K−r + rB3.

We would like to point out that the characterization of the equality case is
not correct since, in fact, if equality holds in (5.6) then K is a 1-tangential
body of K−r + rB3, but not every 1-tangential body of K−r + rB3 satisfies
(5.6); condition (2.3) is needed (see Figure 2). It has however no influence
in the characterization of the equality case in the interesting inequality

V(K)− 3r(K)W1(K) + 2r(K)2W2(K) ≤ 0,

which is obtained in [15, p. 177] as a consequence of (5.6): equality holds if
and only if K is a 1-tangential body of the ball, which is true since in this
case the kernel K−r is just a point, and hence condition (2.3) holds trivially.

Inequality in Corollary 5.1 for n = 3 and E = B3,

V(Kλ) ≥ V(K)− 3 |λ|W1(K) + 3
λ2

2
V(K,K∗, E)− 3

∫ 0

λ
tV(Kt,K

∗, E) dt,

strengthens (5.6). The proof of this fact is analogous to the one in [3, p.
3982].
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